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Abstract. We investigate random walks on a lattice with imperfect traps. In one dimension, we pertur-
batively compute the survival probability by reducing the problem to a particle diffusing on a closed ring
containing just one single trap. Numerical simulations reveal this solution, which is exact in the limit of
perfect traps, to be remarkably robust with respect to a significant lowering of the trapping probability.
We demonstrate that for randomly distributed traps, the long-time asymptotics of our result recovers the
known stretched exponential decay. We also study an anisotropic three-dimensional version of our model.
We discuss possible applications of some of our findings to the decay of excitons in semiconducting organic
polymer materials, and emphasize the crucial influence of the spatial trap distribution on the kinetics.

PACS. 02.50.Ey Stochastic processes – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion 05.60.-k Transport processes

1 Introduction

Random walks in disordered media [1,2] form a class of
statistical processes that have been widely employed for
the description of an impressive number of physical, chem-
ical and biological phenomena. A particularly interesting
subclass is constituted by Brownian motion in the pres-
ence of quenched disorder in the medium. Depending on
the nature of this disorder, significant deviations from the
results known for pure random walks are observed. This
is true for microscopic quantities (e.g. first passage times,
average distance from origin at time t, etc.) as well as
for macroscopic properties, such as the asymptotic time
evolution of the overall population of random walkers un-
dergoing site-correlated annihilation [1,3].

In the present paper, we address the intermediate and
long-time kinetics of random walkers decaying through
two simultaneous channels: (i) spontaneous (‘radioactive’)
decay, with no spatial or temporal correlations involved,
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and (ii) a decay process induced by the presence of non-
moving (quenched) imperfect traps in the medium.

In the existing literature, the term ‘trap’ has been used
to describe different types of disorder: in certain instances,
the concept of a trap has embodied potential wells in the
medium, acting on a walker through delaying his motion
(the ‘valley model’) [1]. In the present context, we re-
fer to traps simply as sites where particles may undergo
spontaneous annihilation with a certain (fixed) probabil-
ity 0 < q ≤ 1.

Random walks with annihilation by trapping have al-
ready been the object of considerable attention during the
past two decades [4–12], to name but a few which are of
relevance for this work. These works represent a funda-
mental and necessary step towards an understanding of
transport processes in partially absorbing media. In biol-
ogy, this applies, e.g., to the scattering of laser light in
tissues. In chemistry, microscopic theories of chemical re-
action kinetics necessitate to access quantities such as the
probability distribution of the nearest-neighbor distance
of a diffusing molecule to a (static or moving) trap, rep-
resenting a reaction center.

In solid-state physics, the study of a whole set of
different phenomena in disordered systems relies heavily
on the understanding of random walks in the presence
of partially absorbing traps: Electron-hole recombination
in amorphous solids, and chemical binding by impurities
of interstitial hydrogen atoms in metals represent two
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common examples. More indirectly, this problem is also
related to self-attracting polymers, and to the density of
states of binary disordered systems, see reference [7].

We draw part of our motivation for this present study
from a class of organic semiconducting materials which
has been the object of considerable attention recently [13].
Due to the nature of their opto-electronic properties, thin
films of organic molecules working as semiconducting dio-
des [14] are already employed in high-performance elec-
troluminescent displays [15]. For the initial experimental
studies of excited states in these materials, aiming at un-
derstanding their fundamental properties, light is used for
their generation – in most cases the elementary excitations
take the form of a bound electron-hole pair [16]. These ex-
citations behave as pseudo-particles (excitons) which dif-
fuse and interact in varying and complex ways with the
medium [17], and eventually annihilate by emitting pho-
tons or phonons. The latter, non-radiative annihilation
process is known to be mediated by chemical defects [18].

Experimental studies suggest that the physics of re-
laxation at work in such excitable media depends in a
rather tight and non-trivial way on a variety of partially
controllable parameters. Among them, we quote the chem-
ical nature of the material used, the way it has been pre-
pared and/or altered by techniques like photo-oxidation,
and the configurational structure at the microscopic level
as well as interactions between individual polymer chains.
These mutual interactions are markedly different in solid
or liquid solutions [19], and amorphous or polycrystalline
films, respectively. The detailed relaxation mechanisms,
and their dependence on sample properties are as yet
incompletely understood, as far as their relation to the
elementary and fundamental processes involved are con-
cerned. We believe that the present, somewhat unsatis-
factory situation calls for an effort in investigating, e.g.,
through simple kinetic statistical models, the role played
by these different parameters.

In addition, the effectively one-dimensional (or at least
strongly directed, anisotropic) nature of exciton transport
in organic semiconductors renders simple mean-field the-
ory approaches inadequate. Rather, one expects marked
fluctuation and correlation effects. For the model studied
here, these in turn should strongly depend on the spatial
defect distribution. Thus, experiments probing the exci-
ton kinetics in semiconducting polymers promise to pro-
vide an excellent testing ground for a wide variety of non-
equilibrium statistical models. Indeed, the dynamics of
laser-induced excitons in N(CH3)4MnCl3 (TMMC) poly-
mer chains appears to be the best experimental realization
to date for diffusion-limited fusion processes A + A → A,
where (in an intermediate time window) the predicted
power law for the particle density n ∼ t−1/2 has actually
been observed unambiguously [20].

The present paper is organized as follows: In Section 2
we provide a precise definition of our model of a random
walk with imperfect traps (inducing non-radiative exciton
recombination) and spontaneous annihilation (or radiative
recombination). Our main interest being the intermediate
and long-time decay of the overall population of particles,

the following section presents a calculation of the tempo-
ral behavior of this quantity in a one-dimensional setup. It
is known that the low dimensionality has a strong impact
on the late-time asymptotics of the decay rate [1,3,6]. Our
analytical method is based on a scheme that we name the
‘decoupled-ring’ approximation. Similar approaches have
been used in the literature [10,5]. We demonstrate that the
late-time resummation of our analytical result reproduces
the known asymptotic, very slow stretched-exponential
decay [4,6,8]. Section 4.1 investigates, by means of Monte
Carlo simulations, the range of validity for this analytic
result when the trapping probability departs from one,
the value for which the decoupled-ring approximation be-
comes exact. In Section 4.2, we examine, by way of ad-
ditional simulations, how the results presented resist to a
relaxation of the one-dimensional constraint, by allowing
particles to slightly diffuse also in the two transverse di-
rections. Finally, in Section 5 we discuss the possibility of
applying such a model to account for experimental mea-
surements of exciton decay in organic semiconductors, and
comment on the crucial role of the spatial trap distribu-
tion for the long-time kinetics.

2 The model

We consider a one-dimensional, regular, infinite lattice L
with linear lattice spacing a. A fraction c of the lattice sites
are tagged, thereby denoting that they possess a special
property. These particular sites will hereafter be referred
to as ‘traps’, indicating their specific role in the dynamics
we are about to introduce.

In general, the spatial trap distribution can be ar-
bitrary. We shall single out two generic, contrasting
situations:

1. The trap distribution is random, i.e., the distance
between two consecutive traps along the chain is
represented by a stochastic variable with poissonian
distribution.

2. The location of the traps is spatially correlated. This
case typically covers the situation of n-modal intertrap
spacings, or, more generically, situations where some
kind of regularity (order) can be identified in the way
traps are distributed over the system.

Both situations are encountered in experimental samples:
If properly synthesized, semiconducting polymer chains in
solution may be considered to be essentially trap-free, ex-
cept for their extremities perhaps, thus falling into the sec-
ond category. Photo-oxidation of the same material leads
to the creation of defects at random locations along the
chain, and the first of the two above cases then applies.

We now introduce entities, representing (pseudo- or
quasi-)particles, initially randomly distributed over the
lattice sites, with density 0 < ρ0 ≤ 1. A discrete dynamics
is implemented, by allowing particles to perform symmet-
ric random walks: A particle located at site k at time t can
subsequently be found either at (k − 1, t + τ) with proba-
bility 1/2, or at (k + 1, t + τ) with the same probability,
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where τ denotes the physical timestep associated to the
iteration of the dynamics.

At each timestep, every diffusing particle may annihi-
late through two different decay channels:

– Spontaneous decay, occuring with fixed probability 0 ≤
p < 1. For excitons in organic semiconductors, this
channel represents radiative recombination.

– Stochastic capture by a trap: If the diffusing particle
enters a tagged site, it annihilates with a given prob-
ability 0 < q ≤ 1. For our later application to exciton
kinetics, we specify this trap-mediated decay process
to be non-radiative, i.e., not emitting light at visible
wavelengths.

In both cases, the particle is simply removed from the
system. The situation with q = 1 will be referred to as
perfect traps.

As both decay process act concurrently without di-
rectly influencing each other, their combined effect ap-
pears as the product of two independent factors. The
spontaneous decay being trivially described by a simple
exponential relaxation, the real difficulty here rests in the
contribution to the kinetics related to the traps, where
the dynamical build-up of spatio-temporal correlations
renders any mean-field type of approach invalid in (suf-
ficiently) low dimensions. As we shall see, the spatial ar-
rangement of the traps may crucially determine the long-
time asymptotics of the particle decay in this situation.

3 Asymptotic kinetics in the decoupled-ring
approximation

3.1 Motivations

The model of perfect, uncorrelated traps in one dimension
has been solved by Anlauf [9] by means of the span dis-
tribution function for one-dimensional random walks. The
model of imperfect trapping has been treated in the liter-
ature by various means. Weiss and Havlin [10] studied the
system in one dimension by introducing a modified model
where particles are either destroyed or reflected at a trap,
thus decoupling the line segments separated by a trap.
This calculation was redone and some errors were cor-
rected in [8]. Additionally, the coupled system was mapped
to a harmonic chain with random masses and the authors
were able to obtain the long-time behaviour of the parti-
cle decay in one dimension. We chose a similar approach
to [10] by decoupling line segments by cutting the infinite
line at each trap and bending each segment onto itself to
form a ring (see Fig. 1). The advantage of this method
over the approach of mapping to a harmonic system with
random masses is that it is easy to obtain results for cor-
related traps: since each decoupled ring can be treated
separately, the final result is simply obtained by averag-
ing over the ring lengths with the appropriate probability
distribution. The disadvantage is that it contains uncon-
trolled approximations since particles can never leave their
ring and wander off into other regions as they could in
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Fig. 1. Schematic illustration of the ring-decoupling procedure.
Black dots represent regular lattice sites, white ones those with
a trap. The infinite, one-dimensional chain is split into seg-
ments (delimited by the location of the traps), each of which
is then closed onto itself to form a ring. The entire chain is
thereby mapped onto an infinite set of rings of varying lengths.
This approximation becomes exact in the limit of perfect traps.

the original model. However, computer simulations show
that these approximations are surprisingly good, in par-
ticular for not too low trapping probabilities. For perfect
traps, the decoupled model even becomes exact since the
traps prevent passage between segments even in the orig-
inal model.

3.2 Single-ring solution

Here, we briefly sketch the solution of the model on a sin-
gle ring of length n. The discrete time dynamics takes the
form of a master equation for the particle density distribu-
tion vector ρ(t) ≡ (ρ1(t), . . . , ρn(t)), with the trap located
at site 1 without loss of generality,




ρ1

ρ2

...
ρn−1

ρn


(t + τ) =




0 1
2 0 · · · 0 1

2
1−q
2 0 1

2 0

0 1
2

...
...

. . . 0
0 1

2
1−q
2 0 · · · 0 1

2 0







ρ1

ρ2

...
ρn−1

ρn


(t).

(1)

For late times, the overall decay rate of the con-
centration is ‘slaved’ to the largest eigenvalue αn of
the above matrix, and its corresponding eigenvector
a. The calculation is straightforward and is shown in
Appendix A.1; the result is

αn = cosφn, where (2)

φn =
π

n
− 2π(1 − q)

q

1
n2

+
4π(1 − q)2

q2

1
n3

+ O(n−4) (3)

for the eigenvalue and
a1 = 1, (4)

ak = cos(k − 1)φn + q
sin(k − 2)φn

sin φn
(5)

for the eigenvector.
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Starting from an initial distribution ρk(t = 0), the
long-time solution is

ρ(t)
t,n→∞∼ (a, ρ(0))

(a, a)
a et ln αn , (6)

where (·, ·) denotes the scalar product. The scalar
products can be worked out for a homogeneous initial
distribution, ρk(0) = ρ0, to leading order in 1/n, and the
result for the mean density on the ring ρ is

ρ(t) ≡ 1
n

n∑
k=1

ρk(t)
t,n→∞∼ 8

π2
ρ0 et ln αn . (7)

Note that this result is better than might be expected at
first sight because the overlap of the eigenvector a with the
initial homogeneous configuration is very large (see Ap-
pendix A.1),

(a, ρ(0))
|a||ρ(0)| =

2
√

2
π

+ O(1/n) ≈ 0.9 . . . , (8)

which guarantees that this result is good even at interme-
diate times.

3.3 Full-chain solution

Given an arbitrary distribution of traps, one can now write
down the solution for the full chain (in the decoupled-ring
approximation) by simply superposing the single-ring re-
sults, properly weighted with the relative abundance for
the occurrence of rings of length n in the chain. For exam-
ple, if there are well-defined trap spacings such that only
a finite number of certain values of ni, i = 1, . . . , k is pos-
sible, with relative abundance P (ni), then the final result
is simply a sum of k terms of the form (7), each multiplied
with P (ni). As is evident from equation (7), the terms for
large n will quickly dominate, and the maximum value
nmax will govern the long-time limit.

For a random (Poissonian) initial distribution of the
traps with concentration 0 < c < 1, all values of n are
possible, the probability of finding a ring of size n being
given by

P (n) = nc2(1 − c)n−1. (9)

This allows us to finally write

ρ(t) t→∞∼ 8
π2

ρ0 c2
∞∑

n=1

n(1 − c)n−1 (10)

× exp
[
t ln cos

(
π

n
− 2π(1 − q)

q

1
n2

+
4π(1 − q)2

q2

1
n3

)]
.

For t → ∞, the late-time asymptotics of the infinite
sum (10) can be extracted (see the appendix). The result
reads:

ρ(t) t→∞∼ ρ0
8

− ln(1 − c)
c2

1 − c

√
2
3π

t1/2

× exp
[
−2(1 − q)

q
ln(1 − c)

]

× exp
[
−3

2
[−π ln(1 − c)]2/3

t1/3

]
. (11)

We recover the known stretched exponential long-time
decay [6,8,9] ρ(t) ∼ exp(−const. × t1/3) with the correct
values for both the exponent and its prefactor, and in-
cluding a q-dependent enhancement factor in agreement
with [8] (higher order correction terms have been omitted
here for brevity). With a random (Poissonian) distribution
of traps, one therefore expects a much slower asymptotic
time decay than for a typical correlated distribution. Cer-
tainly, for any finite number of allowed values of n, the
asymptotic temporal decay will be a simple exponential.
As another example, a Gaussian distribution of the lengths
of trap-free regions (around some mean value) leads to a
stretched exponential with exponent 1/2 (by a calculation
analogous to the one above). Thus, in addition to the trap
concentration and the induced decay probability q, the
spatial arrangement of the traps is of crucial importance.

Instead of using the asymptotic result equation (11) we
prefer to use equation (10) (suitably truncating the sum)
for our comparisons with simulations and experiments be-
low since it applies not only to the long times but also to
intermediate times. This is essential as it is known that the
crossover to the long-time behaviour equation (11) may set
in so late to be unreachable in practice (see e.g. [11] and
references therein [7,12]).

4 Monte Carlo simulations

4.1 Strictly one-dimensional system

We have investigated the range of validity of the result
(10) emerging from our decoupled-ring approximation by
means of Monte Carlo (MC) simulations. The parameter
of interest is of course q, the trapping probability. For
q equal (or very close) to 1, equation (10) should per-
form very well. This agreement may be expected to de-
grade when q is lowered significantly below unity, since
this implies an increasing coupling between adjacent rings
that has been completely neglected in our treatment of
the problem.

Figure 2 shows a set of plots comparing results of MC
simulations to the approximate analytic formula (10), for
different values of the trapping probability q. The spa-
tial trap distribution is random (poissonian). For clarity,
we have set the spontaneous decay probability p to zero
here. No crossover may anyway be expected between the
exponential and stretched exponential components of the
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Fig. 2. Monte Carlo simulations for the one-dimensional im-
perfect trapping process. The dimensionless quantity on the
vertical axis is the amount of random walkers present in the
system, normalized by the initial total population. It can also
be interpreted in a statistical sense, as the survival probabil-
ity of a single walker. Crosses represent the numerical result,
averaged over ∼ 5000 independent runs. The solid lines rep-
resent the analytical result of the ring-decoupling scheme, as
given by equation (10). The following choice of parameters was
made: system size = 214 = 16384 sites; p (spontaneous decay
probability) = 0; c (trap concentration) = 0.2; diffusion coeffi-
cient = 0.5 [a2/τ ]; ρ0 (initial particle density) = 0.6.

dynamics: Due to the structure of equation (11), the sub-
exponential behavior is screened out by the spontaneous
exponential decay for all real and positive values of the
time t.

The first (upper left) graph for q = 1 serves as a ref-
erence for a visual evaluation of the uncertainty in our
numerical data. Looking at the other graphs in the fig-
ure, one observes that for the chosen trap concentration
(c = 0.2), the analytical result performs remarkably well
down to q ∼= 0.4 (!). Note that the finiteness of the systems
simulated implies a temporal horizon: Beyond this limit,
both strong depletion in particles and inaccurate statistics
for large, trap-free regions (which play an increasingly im-
portant role for late times) conspire to render the simula-
tion meaningless. Our approximation being an asymptotic
theory, there is however no doubt that the matching be-
tween equation (10) and the numerical data is at least as
good for the unexplored, late time domain as it appears
in the ‘early-time’ regime depicted in Figure 2.

Figure 3 illustrates how the decoupled-ring approxi-
mation performs upon varying the trap concentration at
fixed trapping probability.

4.2 Anisotropic three-dimensional system

Semiconducting polymer chains can be found in various
configurations: When in solution, they can be considered
as totally isolated from each other, hence representing a
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Fig. 3. Monte Carlo simulations for the one-dimensional im-
perfect trapping process with fixed trapping probability and
varying traps concentration. The quantities on the axis and
the meaning of the symbols chosen are the same as for Fig-
ure 2. Results have been averaged over ∼ 5000 independent
runs. The following choice of parameters was made: system
size = 214 = 16384 sites; p (spontaneous decay probabil-
ity) = 0; q (trapping probability) = 0.4; diffusion coeffi-
cient = 0.5 [a2/τ ]; ρ0 (initial particle density) = 0.6.

set of one-dimensional segments on which excitons propa-
gate and interact. They can, however, also be organized in
a more cohesive manner, namely in the form of a network
characterized by a certain degree of coupling between the
polymer chains, or even in highly ordered structures such
as polycrystalline films. This interaction between chains
is evident both in the chain-to-chain transfer of charges
when these networks are used in light emitting diodes, as
well as in the chain-to-chain transfer of excitons [22]. In
these cases, the one-dimensional character of the exciton
dynamics is likely to be broken, the ‘particles’ being able
to ‘cross-diffuse’ from one chain to a neighboring one.

In this context, an interesting question that naturally
arises is the following: To which extent does the picture
related to the ideally one-dimensional case break down,
once a small degree of cross-diffusion is allowed in a set
of one-dimensional chains forming a crystal-like structure?
For we know that in an isotropic three-dimensional system
with uncorrelated traps, the long-time behaviour of the
system is given by a stretched exponential of the form
ρ(t) ∼ exp(−const.× t3/5) [4,6].

Our one-dimensional model is extended to three di-
mensions by allowing particles to hop in all three spa-
tial directions, but with different rates. In particular, we
single out one direction as the direction of the polymer
chains and allow hopping along this direction as in the one-
dimensional model with a diffusion constant Dl. Trans-
verse hopping is suppressed by choosing a transverse dif-
fusion constant Dt < Dl. Thus, a particle hops along the
polymer direction with probability Pl = (2Dt/Dl + 1)−1

and perpendicular to it with probability 1 − Pl at each
time step.
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Fig. 4. Monte Carlo simulations of a three-dimensional im-
perfect trapping process competing with spontaneous decay
(see the caption of Fig. 2 for comments on the axis and units).
Symbols represent the numerical results for different values of
the transverse diffusion coefficient Dt, as indicated in the leg-
end. They have been averaged over ca. 100 runs. The solid line
shows a fit with exp(−pt− at3/5) (p not being a fit parameter)
as appropriate for a truly three-dimensional system, showing
that at Dt/Dl = 0.002 and c = 0.2 the system already be-
haves like a three-dimensional one. The downward bending of
the curves at low concentrations is an artifact of poor statistics
in that range. The following choice of parameters was made:
system size = 212 × 25 × 25 sites; p = 0.001; c = 0.2; q = 0.5;
longitudinal diffusion coefficient Dl = 0.5 [a2/τ ]; ρ0 = 0.6.

Figure 4 displays the result of MC simulations of our
model in three dimensions, where the ratio of the trans-
verse and longitudinal diffusion rates Dt/Dl has been cho-
sen non-zero, but kept small. The virtue of this figure is
to undoubtedly show the extent to which the topology
affects the dynamics in this process: Even a very small
relaxation of the one-dimensional constraint results in a
drastic effect. This is easily understood if one takes into
consideration the two following important aspects of the
dynamics:

– The increasing role played by trap-free regions of larger
and larger size as time increases.

– The fact that a particle jumping transversely onto a
neighboring chain has, statistically, large chances to
penetrate a small inter-trap segment, and therefore de-
cay rapidly. This is of course true only under the hy-
pothesis that the trap distributions for all chains are
totally uncorrelated with respect to each other.

On the other hand, we see that the decoupled-ring ap-
proximation, which correctly captures only the one-dimen-
sional topology, numerically remains a fairly adequate de-
scription for small anisotropy ratios.

Notice that the crossover from the one-dimensional to
the three-dimensional stretched exponential behavior hap-
pens early on already for low anisotropy ratio Dt/Dl =
0.002. For larger anisotropy ratio, the particles decay
rather quickly; this causes problems with low statistics
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Fig. 5. Effect of the trap concentration on the relaxation of the
one-dimensional constraint. The same simulations as in Fig-
ure 4 were performed for a higher trap concentration c = 0.7
(averaged over ∼ 100 runs here, too), and both sets are now
displayed together. Solid lines correspond to c = 0.2, and dot-
ted ones to c = 0.7. For each of the three cases with Dt 6= 0,
the plot shows the relative deviation from the Dt = 0 case.
Circles, squares, and triangles indicate respectively the simu-
lations with values Dt/Dl = 0.002, 0.02, and 0.2.

in our simulations that cause the bending of the curves
for Dt/Dl = 0.02 and 0.2 towards the ordinate. At long
times, the spontaneous decay process will eventually in-
duce simple exponential time decay. However, for the low
value p = 0.001 used here this occurs outside the shown
time window.

In Figure 5, we examine how the trap concentration
affects the amplitude of the effect of the relaxation of the
one-dimensional constraint on the population decay. As
shown, a higher trap concentration helps to screen out the
emergence of the transverse channel for diffusion. This is
an important observation when one tries to use our model
to interpret experimental data, as we will see in the forth-
coming section.

5 Applicability to the decay of excitons
in quasi-one-dimensional organic
semiconductors

As previously mentioned, our model may be considered
a potential candidate for a ‘minimal’ description of the
decay dynamics of excitons in organic semiconductors.
Confrontation with real data coming from experimental
measurements of such a decay is therefore instructive. The
figures below display our attempts to fit such experimental
data with our analytical result (10), supplemented with a
spontaneous decay factor e−pt.

The data presented here, orginally reported in refer-
ence [23], measure (in frequency space) the response of
ladder-type Poly(Para-Phenylene) (LPPP) to excitation
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Fig. 6. Fourier transform of the response function as measured
(dots) and a fit (solid lines) with the Fourier transform of the
activity for an exponential time decay for the polymer in solu-
tion. Fit parameters are the spontaneous decay rate p and an
(irrelevant) overall amplitude A, given in arbitrary units.

by a modulated light beam. The signal represents the
Fourier transform of the spectrally integrated photolumi-
nescent emission of the material. This is given by the activ-
ity, i.e., the number of radiative recombinations of excited
electronic states (excitons) per time interval. Thus, while
both spontaneous and trap-induced decay channels reduce
the exciton population, only the activity due to the spon-
taneous radiative recombination is monitored by the data.
Three different types of samples, all made from the same
material, were analyzed: The polymer in solution, a pris-
tine polymer film, and the same film after it had been
subjected to photooxidization. In the following, we report
our comparison of theoretical and experimental data for
each case.

Figures 6–8 show the experimental data as real and
imaginary parts. The solid lines are simultaneous fits
(performed with a Levenberg-Marquardt algorithm) to
both real and imaginary parts with a Fourier transform
of the activity corresponding to a single exponential in
the case of the solution, Figure 6, and to a decay follow-
ing equation (10) in the case of the photo-oxidized and
non-odixized films, respectively, Figures 7 and 8.

For the solution, Figure 6, the experimental data can
very well be described by a single exponential (Lorentzian
in Fourier space). The polymer chains have very few de-
fects, apart perhaps from their end-points which may act
as traps, and have all the same lengths – this results in an
almost purely exponential decay of the exciton population
since the lengths of the trap-free regions are monodisperse
(in the sense of the decoupled-ring approximation).

For the oxidized film, Figure 7, the situation changes
entirely. First, when going from solution to film we intro-
duce a coupling between the chains which is not present
in the solution. Second, due to oxidization, many defects
acting as traps have been introduced on the film, see refer-
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Fig. 7. Fourier transform of the response function as mea-
sured (dots) and a fit (solid lines) with the Fourier trans-
form of the activity corresponding to the time decay according
to equation (10) for the photo-oxidized film. Fit parameters
are the spontaneous decay rate p, the trap concentration c,
the trapping probability q, the exciton hopping rate d, and
an (irrelevant) overall amplitude A. The agreement is quite
satisfactory.
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Fig. 8. Fourier transform of the response function as mea-
sured (dots) and a fit (solid lines) with the Fourier transform
of the activity corresponding to the time decay according to
equation (10) for the non-oxidized film. Fit parameters are as
in Figure 7. The agreement is very poor, see text.

ence [23](b). Accordingly, equation (10) describes the data
well, even though it has been devised for one-dimensional
systems rather than films. This may be explained by the
large number of traps (around 65% of the effective sites
according to the fit), which prevent the excitons from
‘feeling’ the three-dimensional nature of the film, as Fig-
ure 5 clearly illustrated in the preceding section. Fur-
ther support for this effective confinement of excitons to
a single chain and the high number of traps is given in
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reference [23](b), based on an analysis of the emission and
absorption photoluminescence spectra.

There are, of course, errors in the values of the fit pa-
rameters. The greatest uncertainty comes from the spon-
taneous decay rate p, which induces very large errorbars
on all other parameters as well (not shown in the figures).
If, however, p is kept fixed at the value indicated in Fig-
ure 7 and only the remaining parameters are used for fit-
ting, the error in e.g. the trap concentration is found to be
about 15%. Nevertheless it should be kept in mind that
our most important result here is the functional form of
our theoretical curve which is able to reproduce the data
rather than precise values of the parameters.

The observed photoluminescence decay-time has been
greatly increased compared to the solution, in spite of the
presence of traps. At the same time we know that the
major decay path for this sample is non-radiative because
the photoluminescence quantum yield is only a few per-
cent. Hence, the long-living photoluminescence must be
the signature of a ‘stabilized species’ which is not pho-
togenerated with a high yield. This may be due to low-
energy sites on the polymers which capture the excitons
and prevent them from decaying spontaneously, or delayed
photoluminescence due to triplet-triplet annihilation. Evi-
dence for the latter process in this particular material can
be found in reference [24]. Neither of these processes have
been included in our simplified model.

Turning to the last of the three sets of data, the non-
oxidized film shown in Figure 8, we observe that it can nei-
ther be described by a single exponential nor with equa-
tion (10). Figure 8 shows the result of an unsuccessful
fitting attempt with equation (10). Apparently, the in-
fluence of the three-dimensional nature of the film made
from the same molecules as were measured in solution
first, cannot be described simply by the introduction of
traps. Accordingly, since our model is not appropriate for
the non-oxidized film, the actual values of the fit param-
eters as shown in Figure 8 are entirely meaningless.

This has an important implication. The non-oxidized
film has a photoluminescence quantum yield of 30% vs.
nearly 100% for the solution of the same molecules.
One way to account for this could be the formation of
traps during the film forming process, e.g. by conforma-
tional stress on the molecules [25]. If this was the case, our
model would capture this effect and describe it properly.
Hence, the reduction of the quantum yield and the dif-
ference in photoluminescence dynamics between film and
solution have to originate from a different solid state effect.

6 Summary and conclusion

We have considered a model of random walkers undergo-
ing decay through both capture by imperfect traps and
spontaneous decay. In one dimension, we have derived an
explicit analytical form for the time dependence of the
survival probability, based on the ring-decoupling approx-
imation scheme, supplemented with an asymptotic expan-
sion. We have demonstrated that this result, although ex-
act only in the limit of perfect traps, performs remarkably

well upon lowering of the trapping probability when con-
fronted to numerical simulations. Extension of our simu-
lations to three dimensions, albeit with anisotropic diffu-
sion, have illustrated the high sensitivity of the decay rate
to the low-dimensionality constraint.

An application of our findings to the understand-
ing of the decay dynamics of excitons in semiconducting
polymers has been attempted. We conclude that within
our model traps alone cannot account for the observed
difference between exciton dynamics in a pristine solu-
tion and film made from the same conjugated polymer,
LPPP. Photo-oxidizing LPPP leads to isolated segments
which probably correspond to the one-dimensional case
in our model. The large concentration of effective trap
sites obviously dominates over all other physically rele-
vant mechanisms.

In this context, it is important to emphasize again the
crucial role played by the spatial trap distribution. For a
more or less regular spacing of defects, the long-time ki-
netics would be governed by a simple exponential, with
a ‘renormalized’ decay rate. For a random trap distribu-
tion, on the other hand, a much slower stretched exponen-
tial decay ensues asymptotically. At least in the long-time
limit, one might therefore quite drastically control the ex-
citon population through appropriate ‘engineering’ of the
spatial arrangement of the trapping defects.

At any rate, our model system demonstrates again the
importance of including statistical fluctuations effects ef-
fectively low-dimensional samples. This is of course a well-
established fact in statistical mechanics model systems.
Yet to date there have been few examples where clear ev-
idence of correlations not captured by mean-field theory
has been found in real experiments on non-equilibrium
systems. Moreover, we believe that our study underscores
the relevance of simplified kinetic models, at least in the
long-time limit, where detailed microscopic mechanisms
become less prominent. We hope that a better under-
standing of, e.g., the important organic semiconducting
materials will eventually be achieved through combining
experimental data with both quantum-mechanical compu-
tations and more macroscopic, statistical approaches.
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Appendix A: Decoupled-ring approximation

A.1 Computation of eigenvectors and eigenvalues

In this appendix, we show how to compute the symmetric
eigenvectors and eigenvalues of the matrix

M =




0 1
2 0 · · · 0 1

2
1−q
2 0 1

2 0

0 1
2

...
...

. . . 0
0 1

2
1−q
2 0 · · · 0 1

2 0




(12)

appearing in equation (1). The anti-symmetric eigen-
vectors, also present in principle, are irrelevant in this
context because they have vanishing overlap with the
initial homogeneous particle distribution. We therefore
try a symmetric ansatz of the form

a ≡




1
a2 ≡ α

a3

a4

...
an−2 = a4

an−1 = a3

an = a2 = α




, (13)

and note that this implies (Ma)1 = α which identifies α
as the prospective eigenvalue corresponding to a. We can
then read off that the second component of Ma is given by

(Ma)2 =
1 − q

2
a1 +

1
2
a3, (14)

which must be equal to αa2 since a is supposed to be an
eigenvector. This gives

a3 = 2α2 − 1 + q. (15)

By a similar argument, the following recursion relation
can be derived for the other entries of the eigenvector:

ak = 2αak−1 − ak−2 (k ≥ 4). (16)

This kind of second-order recursion relation has two expo-
nential solutions rk−2

± (the −2 in the exponent is for later
convenience), and ak is given by a linear superposition
of them, ak = Ark−2

+ + Brk−2
− . Plugging the ansatz rk−2

into the recursion relation equation (16) yields a quadratic
equation for r with the two solutions r± = α ± i

√
1 − α2.

Noting that 0 ≤ α < 1 is implied by the non-conserved
number of particles owing to the trap and the fact that the
particle density cannot be negative, this can be written in
terms of an angle φ with α = cosφ as r± = e±iφ.

The initial conditions a2 = α and a3 = 2α2 − 1 + q
now determine the constants A and B; a straightforward
calculation gives

A = B∗ =
1
2
eiφ +

q

eiφ − e−iφ
, (17)

resulting in

a1 = 1,

ak = cos(k − 1)φ + q
sin(k − 2)φ

sin φ
(2 ≤ k ≤ n). (18)

It now only remains to be checked that an = a2, as im-
posed from the beginning. This condition determines φ
and, after some algebra, results in the following equation:

[1 − (1 − 2q) cos 2φ] sinnφ

−[1 − (1 − 2q) cosnφ] sin 2φ = 0. (19)

The smallest non-zero solution to this equation leads to
the sought-for largest eigenvalue α = cosφ (even though
φ = 0 is technically a solution to equation (19), it is not a
valid one since the constant A does not exist for φ = 0).
Assuming that the smallest φ can be represented by a
perturbative expansion as φ = c1

n + c2
n2 + · · · , equation (19)

can be expanded in powers of 1/n and the coefficients ci

are readily evaluated. The result is

φ =
π

n
− 2π

1 − q

qn2
+ 4π

(1 − q)2

q2n3
+ O(n−4). (20)

Overlap of the eigenvectors with the initial state

As seen in Section 3, we also need to know the overlap
of the eigenvector found in the preceding section with the
initial homogeneous particle distribution, i.e., we need to
calculate

(a,111) =
n∑

k=1

ak , and (a,a) =
n∑

k=1

a2
k. (21)

The symbol 111 here stands for the vector with all entries
equal to 1. Both sums can be evaluated tediously but
straightforwardly by inserting equation (18) and noting
that both of them can be written in terms of geometric
series. The resulting expression may be evaluated further
for large n by inserting φ = π/n+O(n−2). The results read

(a,111) n→∞∼ 2qn2

π2
, and (a,a) =n→∞∼ q2n3

2π2
· (22)

Altogether this gives

(a,111)2

(a,a)
n→∞∼ 8n

π2
· (23)

A.2 Asymptotic evaluation of the long-time behavior

Equation (10), the main result of this calculation, can
be evaluated asymptotically for long times. Since φ =
O(1/n), the long-time behavior is dominated by the large-
n terms in the sum. Using α = cos(φ) = 1 − π2/2n2 +
2π2(1 − q)/qn3 + O(n−4) and ignoring irrelevant prefac-
tors for the moment, equation (10) can be written as

ρ(t) ∝
∞∑

n=1

n exp
[
n ln(1 − c) − π2

2n2
t +

2π2(1 − q)
qn3

t

]
.

(24)
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By introducing x ≡ t1/3, the sum on the r.h.s. can be
recast as a Riemannian sum approximating an integral in
the variable z = n/x,

ρ(t) ∝ x2
∞∑

n=1

1
x

n

x
e

x3

n3
2π2(1−q)

q ex[n ln(1−c)/x−π2x2

2n2 ] (25)

x→∞∼ x2

∫ ∞

0

dz ze2π2(1−q)/z3qex[z ln(1−c)−π2/2z2]. (26)

This integral may now be evaluated asymptotically by
Laplace’s method and finally yields, including all prefac-
tors, equation (11).
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